

Hydrogen Infrastructure: Scalability and Technical Considerations

(Co-Hosted by California Hydrogen Business Council)

June 20, 2019

California Transit Association

- Represents more than 200 transitaffiliated entities, including more than 80 transit agencies in CA
- Advocates for policies and funding solutions that support and advance public transit

Involvement in Innovative Clean Transit Regulation

- Led negotiation with ARB on behalf of the transit industry
- Focused our advocacy efforts on the following provisions:
 - Benchmarking & Regulatory Assessment
 - ZEB Purchase Mandate Schedule
 - Waiver for Early Compliance
 - Definition of Small vs. Large Agencies
 - Access to Incentive Funding
 - Excluded Buses

Support for ICT Regulation Implementation

How to Ask Questions

- Submit your questions anytime during the program using the Questions module in your webinar control panel at the right of your screen.
- We will collect all questions and get to as many as time permits during the Q&A portion of the program.

• P(olls (0/0)		51 X		
-) QI	uestions		51 X		
X	Show Answered (Questions			
х	Ques	tion	Asker		
			-		
			*		
			Ŧ		
			*		
			-		
Se	nd Privately S	end to All	•		
+ H:	andouts: 0 of 5		51 X		
+ C	nat		51 X		
Stat	State Transit Assistance Program Allocation Methodology Webinar ID: 125-149-947				
	GoTo Webinar				

Peter Thompson Project Coordinator California Hydrogen Business Council

Mission & Sector Action Groups:

The California Hydrogen Business Council (CHBC) is comprised of over 100 companies and agencies involved in the business of hydrogen. Our mission is to advance the commercialization of hydrogen in the energy sector, including transportation, goods movement, and stationary power systems to reduce emissions and dependence on oil in California.

CHBC Activities:

- Advocacy & Initiatives
 - Renewable Hydrogen, Renewable Energy and Climate
 - Hydrogen Blending and Gas System Integration
 - Hydrogen Fueling Station Build-out
 - Stakeholder Advocacy Campaign
- Communications & Business Expansion
- Goods Movement, Heavy-Duty Transportation, and Clean Ports
- Hydrogen Energy Storage and Renewable Hydrogen
- Public Transport

MEMBER ORGANIZATIONS

Our Members Include:

- Hydrogen producers and distributors
- Automotive companies
- Public transit systems and suppliers
- Fuel cell, electrolyzer, compressor and storage manufacturers
- Fueling station developers, engineers and consultants
- Municipal and state agencies
- Component suppliers

Get the Facts!

Fuel Cell Electric Bus (FCEB) Fact Sheet from CHBC and California Fuel Cell Partnership:

https://www.californiahydrogen.org/wpcontent/uploads/2017/10/CHBC-CaFCP-Fuel-Cell-Electric-Bus-Fact-Sheet.pdf

Status Dava

FUEL CELL ELECTRIC BUSES for Zera-Isotission Public Transit

California has non-leign-at-trides in in proving its air quelity over meny decades, but transportet on remains the state's dominant source of air pallytion. If California is to more that it cuality in proving that and ensuing source and the goals, the output of growth of cance ensuing the state bis deployment is essential.

Among the different electric purportions available today. The cell electric houses (0.10%) offer a comparent of advantages.

Emissions and GHG Reductions

DCPBs have zero tailpipe enricibing and produce har image rus design if the downless or particulate matter. Hydrogen har nerewise explanation the taken wind and broges ensures full caliben neutrality from a well to whole spensodary and significantly reduces carbon clavide (CO2) emissions. As since of CCPS can include the algest import on the health exacted in parts of processing skipping each and specify communities.

Performance

Z-rote mission FFF0s offer on each one in float rule performance (e.g. gradieability in globay speeds, the ing times and range) even all types of trans troutes. Lapotted efficiency into even more voluments will continue to increase the fuel economy of PCEBs, which is clicady 1.7 to 1.9 times fighter than conventional prices for a killion, FD and a National so Fixed Type CCEBs, they successfully completed being each of FAA Aboving Dis Research and leading Center.

With more than 10 million miles in existing social and more than 15 years on the read in different environments and transitions dury rates 13 U S base proven to meet operational requirements of transit agency operators. FOLBs offer a 1:1 real/comment of QS & cleek hutes various companyments. For example, an AC Transit progress report on zero-emission bus experision for an that 92% of all concession be served by IC. Us on a 1:1 region emitting the shifts.

Scalability

The use of a compressed gap like hydrogen fuel for transit busics is a social or to use for the time includes of a type per peptitive hout stressing electronic mini-sonic inness.

Fueling

Repid fueling, like CNS & diesel fueling, can take place at any bus fueling dapat designed with the addition of delivered hydrogen or onsite hydrogen production. There are no conternor structs due to builte that ge and firefing.

Cost

FCEB optical costs noted docreased considerably as partly valuence have grown, 2010 Winter Clyrepits free reliberes on 20m per ballions from or 20. For the 25 New HyperFCL3s currently being built for 3 California transit agencies, the cost per ballio \$1.225m, New Figures that a constant on multi 100 balles will be the effect of 5650,000 per ballion.

ATheotom ExcelorBus

Fuel Cell Electric Bus Technology: Technical Capabilities and Experience

Takeaways

- FCEBs have 300-400 mi range, 6-20 minutes refueling time, and seeing cost reductions.
- Fuel cells and batteries are complementary on all FCEVs (light, medium, heavy duty).
- FCEBs are high performers, exceeding DOE/DOT goals.
- Remaining Challenges: Large fleet deployments, Maintenance Training, and Hydrogen Stations
- AC Transit and SunLine have proven the capabilities of FCEBs since deploying in the early 2000s.
- If you missed the first two webinars, the recordings are available here: <u>https://caltransit.org/events/webinars/fuel-</u> <u>cell-technology-a-four-part-series/</u>

Events

Policy Summit - Sacramento (August)

 Enabling Deep Decarbonization with Utility-Scale Hydrogen Energy Storage Workshop -San Francisco (Sept./Oct 2019)

 The Other Electric Bus: Meeting California's Innovative Clean Transit Regulation with Fuel Cell Technology Workshop (November 2019)

 Hydrogen & Fuel Cell Ports Briefing -POLB & POLA (November 2019)

Stay Informed: https://www.californiahydrogen.org/chbc-events/

Thank You!

Peter Thompson

+1 (310) 455-6095 x302

pthompson@californiahydrogen.org

Join us!

www.californiahydrogen.org

Scalable Hydrogen Fueling for Transit Applications

Al Cioffi

June, 2019

Copyright 2016, Plug Power Inc.

Plug Power is the Leader in Hydrogen and Fuel Cell Technology

Conventional Wisdom of Electrical Infrastructure

Fleet Size

PLUG POWER

Reality of Hydrogen Infrastructure

Fleet Size

PLUG POW/F

Hydrogen Solutions

- Hydrogen can be delivered
 - Liquid form [LH₂]
 - Gaseous form [GH₂]
- Hydrogen can be generated on-site
 - Steam Methane Reformer
 - Electrolyzer
- Hydrogen can be renewable/de-carbonized

GH2

Delivery

LH2 Delivery

Reformer

Delivered Gas Solution – A Starter Solution

Delivered Liquid Solution – Fleet Expansion

On-Site Generation Solutions – Fleet Expansion

Hybrid Solutions – Flexible and Forgiving

Hydrogen Infrastructure Planning Considerations

- Fleet conversion and expansion plans
 - How many fuel cell vehicles to start at how many locations
 - Current and future locations
 - Ultimate fleet size per location
 - Timing
- Access to water, electricity, and gas
 - Rates
 - Renewability
 - Stability of supply
- LCFS and Renewable energy credits
- Contractor selection
 - H2 experience
 - Turn-key
 - Service Level Agreements
- Hydrogen infrastructure expansion can adapt as your plans change (or recover from errors)

PLU

Corporate Headquarters 968 Albany Shaker Road, Latham, NY 12110

West Coast 15913 E. Euclid Avenue, Spokane, WA 99216

plugpower.com

Electrolysis for On-Site Hydrogen Generation:

Enabling scalable hydrogen infrastructure for Transit...

Stephen Szymanski, Director of Business Development, Nel Hydrogen +1.203.678.2338 • sszymanski@nelhydrogen.com January 17, 2019

Company Overview

Public Company, Pure H₂ Play

- 3 Manufacturing Sites
- 250 Employees
- 3,500+ Electrolyzers Installed
- 40+ H₂ Fueling Stations
- 90+ Years Experience

USA (Wallingford, CT) PEM Electrolyzers

Denmark (Herning) H₂ Fueling Stations

Norway (Notodden) Alkaline Electrolyzers

What we do....

Example: M400 electrolyzer being installed at SunLine Transit

- 902 kg/day capacity with 8 modules installed
- Optionally can start with 4 modules and grow from there:
 - Doubling the capacity is < 50% of initial CAPEX

nel•

HDV's consume much more hydrogen than LDV's and fleet operation enables high fueling equipment utilization.

Infrastructure cost for H2 decreases with number of buses...

nel•

A scalable model for Norway...

nel•

Central large scale production, distribution, fueling, services

Efficient Hydrogen distribution:

- 1.500kg pr. truck
- Container swap or dump-off

Produced locally on 100% renewable basis:

- Bus depot capacity can easily be added or expanded
- Fuel with 100% renewable hydrogen at attractive price

Nel Hydrogen[®] H2 bus refueling station, 700 bar in a 20ft. container

- Arriving (full) swap storage is parked and connected
- Truck driver then leaves with empty trailer
- Scalable and efficient solution, also applicable for other HD segments

nel

nel

Installation Example: Rosenholm Oslo 10X the capacity at half the cost

Existing solution from 2012:

- Existing H2 Refueling
- Onsite production
- Up to 250 kg/day, ~10-12 FC buses
- Footprint: ~350m2
- H2 Price: \$12.59/kg

New proposed solution:

- New H2Station[®]
- Central production trucked-in
- Up to 3.000 kg/day, ~150 FC buses
- Footprint: ~200m2
- H2 Price: \$5.72/kg
- Supports fossil parity

Enabled by drop and swap hydrogen supply and centralized production

Hydrogen fuel cost parity with diesel/CNG for buses: within reach today...

Achieving hydrogen price parity with diesel/hybrid and CNG will be important for the TCO experienced by Transit Agencies. FCEB consumption ranging from 0.13 – 0.16 kg/mile results in the following fossil parity price with Diesel/Hybrid and CNG:

- Diesel: \$4.5 \$5.6 per kg hydrogen
- Diesel hybrid: \$3.6 \$4.5 per kg hydrogen
- <u>CNG:</u> \$3.5 \$4.3 per kg hydrogen

Price parity with diesel is within reach today.

Diesel hybrid and CNG price parity requires scale.

Hydrogen price parity with diesel/CNG for busses in California

Fuel	Diesel	Unit	Diesel Hybrid	Unit	CNG	Unit
Fuel consumption	3.87	miles/DGE	4.84	miles/DGE	2.91	miles/DGE
Fuel price (incl. O&M)	\$2.79	/DGE	\$2.79	/DGE	\$1.62	/DGE
Fuel cost per distance	\$0.7	/mile	\$0.6	/mile	\$0.6	/mile
H2 parity price - 1	\$5.6	/kg	\$4.5	/kg	\$4.3	/kg
H2 pariy price - 2	\$4.5	/kg	\$3.6	/kg	\$3.5	/kg

Hydrogen	1	2	Unit
	8.00	9.85	kg/100km
Fuel consumption	0.08	0.10	kg/1km
	0.13	0.16	kg/mile
	7.77	6.308	mile/kg

Data based on ARB: "Innovative Clean Transit - Cost Data and Sources - Update on 6/26/2017"

Thank you!

www.nelhydrogen.com

Alameda-Contra Costa Transit District Fuel Cell Bus Program

Fuel Cell Electric Bus Infrastructure Considerations

June 20, 2019

actransit.org

36

Introduction

- Joe Callaway
 AC Transit Director of Capital Projects
- AC Transit Infrastructure History
 - Gen 1 (2003 2006) Electrolyzer (25 kg / day)
 - Gen 2 (2006 2010) Dual SMRs (50 kg / day) Partnered with Chevron
 - Gen 3A (2010 Present) LH2 (360 KG / day) Solar Powered Electrolyzer (65 kg / day)
 - Gen 3B (2014 Present) LH2 (360 KG / day) SOFC Powered Electrolyzer (65 kg / day)
 - Gen 3A Equipment Upgrade Pending

Emeryville Hydrogen Station

D2 Hydrogen Station:

- 9,000 Gal LH2
- Vaporizer
- Compressor
- 360 kg of High Pressure Storage

Stand-alone Bus Fueling Island

External Access Auto Fueling Facility

Oakland Hydrogen Station

- H2 Dispensing in the Fuel
 Island
- 360 kg of High Pressure Storage (7,777 psi)

- 9,000 gal LH2 Tank
- Buffer Storage for Electrolyzer
- IC-50 Compressor
- Vaporizer

Other Hydrogen Program Assets

Power Sources that Support On-site Hydrogen Production by Electrolyzer

- Rooftop Solar at CMF
- Trellis Solar at D6 (Hayward) Division
- SOFC at D4 (Oakland) Division

PLANNING CONSIDERATIONS

- Plan with Operational Integration in Mind
- Be Mindful of Bus Fleet Transformation
- Consider Utility Constraints
- Evaluate Supply Options
 - On-site Generation v. Delivery
- Respect the Learning Curve

DEVELOPMENT CONSIDERATIONS

- Partner Wisely
- Engage your AHJ
- Training
- Permitting
- Consider Maintenance Facilities

OPERATIONAL CONSIDERATIONS

- Integration into Normal Operations
- Training
- Station Maintenance
 - Preventative Maintenance
 - Corrective Maintenance
- Fuel Issues
 - Hydrogen Costs / Hydrogen Supply

FUNDING SUPPORT FOR AC TRANSIT H2

- Complex Matrix of Funding Sources
- Emeryville Hydrogen Station
 - California Air Resources Board
- Oakland Hydrogen Station
 - California Energy Commission
- Oakland Electrolyzer and Solid Oxide Fuel Cell
 - FTA TIGGER Grant with PG&E SGIP Rebate as Matching Funds

Thank You!

For further Information:

H. E. Christian (Chris) Peeples

At-Large Director AC Transit

Salvador Llamas

Chief Operating Officer AC Transit sllamas@actransit.org

Joe Callaway Director of Capital Projects AC Transit jcallaway@actransit.org

actransit.org

How to Ask Questions

- Submit your questions anytime during the program using the Questions module in your webinar control panel at the right of your screen.
- We will collect all questions and get to as many as time permits during the Q&A portion of the program.

• P(olls (0/0)		51 X		
-) QI	uestions		51 X		
X	Show Answered (Questions			
х	Ques	tion	Asker		
			-		
			*		
			Ŧ		
			*		
			-		
Se	nd Privately S	end to All	•		
+ H:	andouts: 0 of 5		51 X		
+ C	nat		51 X		
Stat	State Transit Assistance Program Allocation Methodology Webinar ID: 125-149-947				
	GoTo Webinar				

Remember to Register!

 Fund the Fleet: Funding Mechanisms to Assist and Accelerate ZEB Deployment (6/27)

caltransit.org

Contact Us

Michael Pimentel Legislative & Regulatory Advocate 916-446-4656 x1034 michael@caltransit.org

Hydrogen Infrastructure: Scalability and Technical Considerations

(Co-Hosted by California Hydrogen Business Council)

June 20, 2019