

# Generation ZEB

John Drayton National Lead, Advanced Vehicle Programs WSP-USA

November 2019





#### Who is WSP?

Global Engineering, Design Consulting Formerly Parsons Brinkerhoff, founded in 1885, 50,000 employees world-wide

#### Why WSP for ZEB?

Over 60 ZEB projects Comprehensive ZEB Services (Planning, Project Management, Engineering, both FCB and BEB) Lead more ZEB planning and design work than any other USA firm

## FCEB Case Study - AC Transit

Preliminary Engineering Design and Implementation Plan for 45 Zero Emission Buses (ZEBs)



#### **45 ZEB Project**

- 1. Next step to AC Transit 100% ZEB fleet
- 2. BEB range is not an issue.
  - 70 Clean Corridor Blocks serving disadvantaged communities can be served with BEBs (with Division charging only)
- 3. Positions AC Transit to make most informed decision after 45 ZEBs
  - Only transit agency in U.S. doing this at this scale
- 4. Provides flexibility with emerging technologies
  - Vehicles Batteries Pantographs Charge Management
- 5. Consistent with Long Range Facilities Utilization (Master) Plan

### Fuel Cell Electric Bus (FCEB) Current Maintenance & Fueling Capacity

| Division | Maintenance<br>Capacity | Fueling Capacity |
|----------|-------------------------|------------------|
| D2       | 30                      | 30               |
| D4       | 20                      | 11               |
| Total    | 50                      | 41               |

### Battery Electric Bus (BEB) Operations Modeling Results

- BEB range is not an issue
- 70 Clean Corridor Blocks can be served with Battery Electric Buses (with Division charging only)
- All routes serving disadvantaged communities

| Division | # of   | Recommende<br>ZEB Dep | ed Blocks for<br>loyment |
|----------|--------|-----------------------|--------------------------|
|          | DIOCKS | FCEB                  | BEB                      |
|          |        |                       |                          |
| 2        | 20     | 16                    | 4                        |
| 4        | 140    | 74                    | 66                       |
|          |        |                       |                          |
| Total    | 160    | 90                    | 70                       |

#### **Current ZEBs Available to Purchase**

|                               | 40-Foot                   | 45-Foot | 60-Foot |  |
|-------------------------------|---------------------------|---------|---------|--|
|                               |                           |         |         |  |
| Battery Electric Bus (BEB)    | Yes *<br>(\$1.14 M each)  | Νο      | Yes *   |  |
| Fuel Cell Electric Bus (FCEB) | Yes **<br>(\$1.40 M each) | Νο      | Yes *** |  |

- \* Multiple Manufacturers Available
- \*\* Two Manufacturers Currently Available
- \*\*\* One Manufacturer Currently Available

Note that 45-foot (MCI type high capacity, luggage carrying buses) BEBs may be available by the beginning of 2020.

### **ZEB Equipment Procurement**

| Manufacturer       | ZEB Models                               | Annual Production<br>2017 | Annual Production<br>2018 | Deliveries of ZEBs<br>(2009-2017) |
|--------------------|------------------------------------------|---------------------------|---------------------------|-----------------------------------|
| New Flyer          | XE-60, XE-40 BEB/FCEB                    | 2,105                     | 2,238                     | 71                                |
| Gillig             | 35 ft., 40 ft. low floor BEB             | 1,753                     | 1,877                     | 4                                 |
| Proterra           | Catalyst FC, Catalyst XR,<br>Catalyst E2 | 48                        | 135                       | 248                               |
| BYD USA            | K7, K9, K11, C10                         | 114                       | 128                       | 377                               |
| El Dorado National | 40 ft. FCEB                              | 369                       | 236                       | 26                                |
| Nova BUS           | 40LFSe, 60LFSe in dev.                   | 1,246                     | 1,205                     | 0                                 |
| TOTAL              |                                          | 5,636                     | 5,819                     | <b>726</b> (6%)                   |

wsp

## Comparison of Energy Costs (H<sup>2</sup> @ \$7/kg)

| Fuel/Energy Costs             | FCB         | BEB         | CNG         | Diesel      |
|-------------------------------|-------------|-------------|-------------|-------------|
| <b>Cost for Energy</b>        | \$7.00      | \$0.15      | \$0.60      | \$3.00      |
| <b>Energy/Fuel Efficiency</b> | 8.5         | 2.5         | 2.1         | 3.5         |
| <b>Energy/Fuel Cost/Mile</b>  | \$0.82      | \$0.38      | \$0.29      | \$0.86      |
|                               |             |             |             |             |
| 1 Bus @ 40,000 miles/year     | \$32,941.18 | \$15,000.00 | \$11,428.57 | \$34,285.71 |

## Comparison of Energy Costs (H<sup>2</sup> @ \$5/kg)

| Fuel/Energy Costs             | FCB         | BEB         | CNG         | Diesel      |
|-------------------------------|-------------|-------------|-------------|-------------|
| <b>Cost for Energy</b>        | \$5.00      | \$0.15      | \$0.60      | \$3.00      |
| <b>Energy/Fuel Efficiency</b> | 8.5         | 2.5         | 2.1         | 3.5         |
| <b>Energy/Fuel Cost/Mile</b>  | \$0.59      | \$0.38      | \$0.29      | \$0.86      |
|                               |             |             |             |             |
| 1 Bus @ 40,000 miles/year     | \$23,529.18 | \$15,000.00 | \$11,428.57 | \$34,285.71 |

## Comparison of Energy Costs (H<sup>2</sup> @ \$3/kg)

| Fuel/Energy Costs             | FCB         | BEB         | CNG         | Diesel      |
|-------------------------------|-------------|-------------|-------------|-------------|
| <b>Cost for Energy</b>        | \$3.00      | \$0.15      | \$0.60      | \$3.00      |
| <b>Energy/Fuel Efficiency</b> | 8.5         | 2.5         | 2.1         | 3.5         |
| <b>Energy/Fuel Cost/Mile</b>  | \$0.35      | \$0.38      | \$0.29      | \$0.86      |
|                               |             |             |             |             |
| 1 Bus @ 40,000 miles/year     | \$14,117.65 | \$15,000.00 | \$11,428.57 | \$34,285.71 |

### **ZEB Fleet Mix Options**

|   | Option           | FCEB    | BEB   | Total | Remarks                                                                  |
|---|------------------|---------|-------|-------|--------------------------------------------------------------------------|
|   |                  |         |       |       |                                                                          |
| Α | Max. FCEB        |         |       |       | (to maximize use of existing hydrogen fueling capacity)                  |
|   | New (45 ZEBs)    | 25      | 20    | 45    |                                                                          |
|   | Existing         | 11      | 5     | 16    | _                                                                        |
|   | Total            | 36      | 25    | 61    | Existing hydrogen fueling facilities will support an additional 5 FCEBs  |
|   |                  |         |       |       |                                                                          |
| В | Min. FCEB        |         |       |       | (5 of 45 new ZEBs on new Emeryville Amtrak service)                      |
|   | New (45 ZEBs)    | 5       | 40    | 45    |                                                                          |
|   | Existing         | 11      | 5     | 16    | _                                                                        |
|   | Total            | 16      | 45    | 61    | Significantly underutilizes existing FCEB fueling capacity               |
|   |                  |         |       |       |                                                                          |
| С | All Battery Elec | ctric B | Buses |       |                                                                          |
|   | New (45 ZEBs)    | 0       | 45    | 45    |                                                                          |
|   | Existing         | 11      | 5     | 16    | _                                                                        |
|   | Total            | 11      | 50    | 61    | Significantly underutilizes existing FCEB fueling capacity               |
|   | 1                |         |       |       |                                                                          |
| D | Equalize Quan    | tities  | (betw | een F | CEB and BEB)                                                             |
|   | New (45 ZEBs)    | 20      | 25    | 45    |                                                                          |
|   | Existing         | 11      | 5     | 16    | _                                                                        |
|   | Total            | 31      | 30    | 61    | Existing hydrogen fueling facilities will support an additional 10 FCEBs |

RECOMMENDED

#### **ZEB Expansion Cost (By Fleet Mix Option)**

|        | F         | CEB          |           | BEB          | Total Bus | Total          | % of Total |
|--------|-----------|--------------|-----------|--------------|-----------|----------------|------------|
| Option | Cost/Bus: | \$ 1,400,000 | Cost/Bus: | \$ 1,140,000 | Cost *    | Infrastructure | for Buses  |
|        | Qty.      | Subtotal     | Qty.      | Subtotal     | 0051      | Cost **        |            |

| A (Max FCEB) | 25 | \$35,000,000 | 20 | \$22,800,000 | \$<br>57,800,000 | \$<br>12,100,000 | 83% |
|--------------|----|--------------|----|--------------|------------------|------------------|-----|
| B (Min FCEB) | 5  | \$ 7,000,000 | 40 | \$45,600,000 | \$<br>52,600,000 | \$<br>16,600,000 | 76% |
| C (All BEB)  | 0  | \$-          | 45 | \$51,300,000 | \$<br>51,300,000 | \$<br>17,800,000 | 74% |
| D (Equalize) | 20 | \$28,000,000 | 25 | \$28,500,000 | \$<br>56,500,000 | \$<br>13,300,000 | 81% |

\* Pursuing additional grant funds that may reduce the Option A and D Bus Cost up to \$3M.

\*\* Construction cost being refined. Provision for PG&E cost not included.

#### **Division Charging – Overhead Charging** (Recommended)

#### <u>Pros</u>

- Supports variable length vehicles if overhead support continuous
- Structure can support both overhead plug-in drops & pantograph if continuous
- Allows overhead distribution in lieu of under ground distribution
- Provides flexibility for future charging improvements
- Current pantograph 17'-0" clear allows for double deckers under structure

#### <u>Cons</u>

- Add cost for overhead structure if not shared / double utilized
- No large quantity of inverted pantograph depot installs



### **D4 BEB Overhead Charging**





#### SCALABLE

**Transformer 1:** Installed for 5 BEBs

<u>Transformer 2:</u> For 45 ZEB Project (all options)

Transformer 3: For Options B & C

Transformers 4 thru 12: Future

#### **D4 BEB Infrastructure**



#### **D4 BEB Infrastructure**



#### **45 ZEB Project**

- 1. AC Transit will be consider adopting purchase options in January 2020.
- 2. AC Transit continues to look objectively at ZE technologies, and will continue to consider both BEB and FCEB options
- 3. If recommendations adopted in January, there will be a unique opportunity to consider identical BEB, FCEB as well as conventional buses.



# Questions?

John Drayton National Lead, Advanced Vehicle Programs WSP-USA

November 2019

wsp