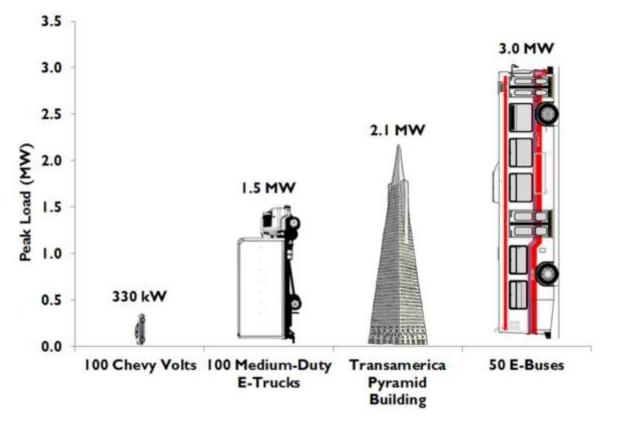
Solar

From Concept to Reality

An Industry Dialogue

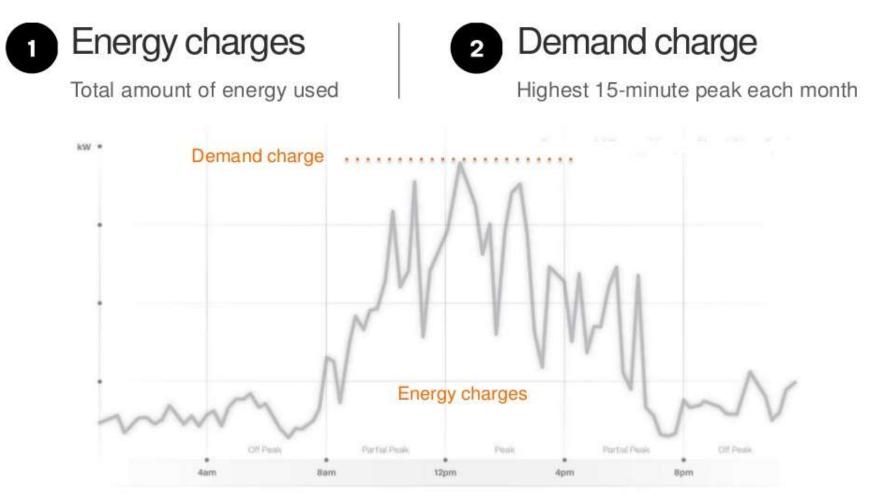
- CTA Fall Conference
- Concurrent Educational Session
- November 9, 2017
- Moderator Fred Silver- VP CALSTART

Agenda


- Use of Solar and Grid Upgrade driven by growth of battery Electric bus deployments
- Type of Solar System Options Available to Transit and their Benefits
- Examples of Solar Systems and Energy Storage Operated by Transit
- Panel Discussion

Growth of ZEB Deployments- From 1-5 to 10 -20 to 50 BEBs

- Individual fleet sizes of some California properties approaching 20- 50 BEB's with some committing to fleet size of more than 100 by 2018/19
- More than Sixty Fleets nationwide demonstrating or deploying ZEBS
 - With cumulative orders of 850 there are more than 200 Battery electric buses deployed



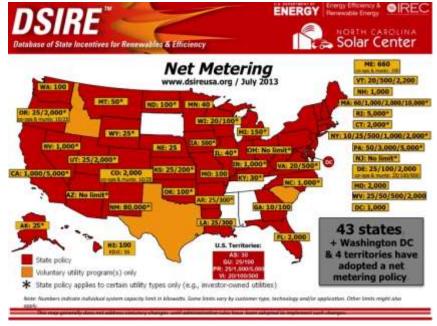
Peak loads for Various Electric Vehicle Fleets (without mitigating grid impacts)

Assumptions: the Chevy Volt charging rate is 3.3 kW, the medium-duty E-Truck charging rate is 15 kW and the E-Bus charging rate is 60 kW.

Two Parts of Your Utility Bill Energy and Demand

PG&E Presentation on Demand Charges

Solar Options


Solar and Net Metering

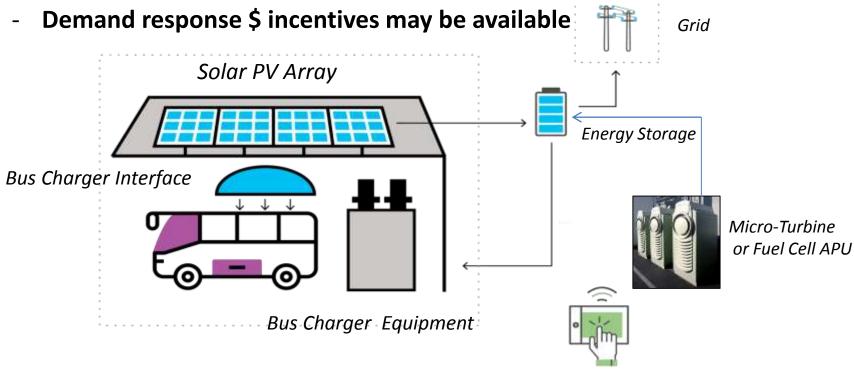
• Solar and Battery Energy Storage

• A Solar System within a Microgrid

The Value of Solar Systems

- 43 States have adopted net metering
- Net metering is a billing mechanism that credits solar energy system owners for the electricity they add to the grid
- A bi-directional meter measure energy use and energy produced
- Solar will reduce the Part A energy cost of your utility bill

The Value of Energy Storage


- Energy storage systems using batteries, ultracapacitors, or flywheels can act as a buffer between the grid and charger to smooth out peak loads
- The ABB TOSA bus charging system in Switzerland uses ultracapacitors to decrease the demand on the grid from 400 kW to 40 kW while maintaining the benefits of on-route fast

	Grid to Charger	Charger to Bus
Maximum charging power	40kW	400kW
Charging duration	2.5 Minutes	15 Seconds
Energy transferred	1.7kWh	1.7kWh

Micro-grid

- Definition: a small network of electricity users with a local source of supply that is usually attached to a centralized national grid but is able to function independently
 - Can address grid resiliency allowing the system to island and operate off the grid for hours at a time

Energy Management System

Example of Transit Projects

- Advanced Transit Bus VGI
 Project at Santa Clara Valley
 Transit (VTA) in California Funded by the CEC/FTA
- Leveraging VTA's plans to purchase up to 35 all-electric buses towards electrification of its near 500-bus fleet
 - Includes Vehicle to Grid and Vehicle to Building functions
 - CALSTART Selected to develop
 Best Practices
 - Targeting a reduction of \$220K per year in demand charges

CALSTART Fresno Rural Envision Solar Midday Bus Charger

- Fresno Rural Trans and CALSTART deploying 2 BEBs on express routes between Fresno and Clovis
- Envision Solar Umbrella provides an integrated, and stand alone
 - Tracking solar array
 - Energy storage system
 - Charger
- Due to the demanding range requirements, the buses will be charged in Fresno – Mid-day avoiding extending the range and avoiding peak time premium costs

Our Panel Discussion

Paul Stith- Black and Veatch

Len Engel – Antelope Valley Transit Authority

Michael Liu- Build Your Dreams (BYD)